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Lecture 6 - Chromatic Polynomial

For a simple graph G and an integer k, denote by P (G, k) the number of k-colorings of the graph G. We call

this function the chromatic polynomial of G.

1: For a tree T , show that P (T, k) is really a polynomial.

Solution: It is easy to see verify that for any tree T on n vertices, it is really a

polynomial:

P (T, k) = k · (k � 1)
n.

It can be seen by a greedy coloring.

2: Let G be a graph. What is the smallest k such that P (G, k) > 0?

Solution: Observe that �(G) is the smallest integer k, for which P (G, k) > 0. From

definition, it needs to be 0 for smaller k.

The following recursion implies that G is really a polynomial. By G/e we denote the graph obtained by

contracting e, i.e. identify the endpoints of e in G� e.

Proposition 1. Let G be a graph and let e = xy be an edge of G. Then,

P (G, k) = P (G� e, k)� P (G/e, k). (1)

3: Prove the proposition.

Solution:

Proof. The number of k-colorings of G � e, where x and y are colored di↵erently is

P (G, k). The number of k-colorings of G � e, where x and y are colored the same

equals P (G/e, k). From here we get the relation.

4: Find P (C5, x) using the above recursion.

Solution: For demonstration let us evaluate the chromatic polynomial of C5. Notice

that P (C5, x) = P (P5, x)�P (C4, x). As P5 is a tree, we have P (P5, x) = x5�4x4+6x3�
4x2 + x and with a previous application of the recursion, one can evaluate P (C4, x) =
x4 � 4x3 + 6x2 � 3x. And these two give us P (C5, x) = x5 � 5x4 + 10x3 � 10x2 + 4x.

A color k-partition of G is a partition of V (G) on k nonempty disjoint sets

V1, V2, . . . , Vk,

such that Vi is an independent set in G. Note that a color k-partition of G give us immediately a k-coloring
of G with all Vi being its color classes. Denote by ak(G) the number of color k-partitions of G. Recall that

k[i] = k(k � 1) · · · (k � i+ 1).

Proposition 2. Let G be a graph on n vertices. Then,

P (G, k) =
nX

i=1

ai(G)k[i] . (2)
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5: Prove the proposition.

Solution:

Proof. If the graph G is properly colored with precisely i colors, then color classes

comprise a color i-partition, and their number is ai(G). As there are k available colors,

we can assign colors to the color classes of an i-partition on k[i] ways, which is ai(G)k[i]
all together. For the end observe that every proper coloring can be obtained in this

way.

Proposition 3. Let G be disjoin union of graphs G1 and G2. Then,

P (G, k) = P (G1, k) · P (G2, k) .

6: Prove the above proposition.

Solution: This should be obvious as any k-coloring of G1 and G2 give a k-coloring
of G1 [G2.

Let G be a union of G1 and G2 whose intersection is a clique, i.e.

G = G1 [G2 and G1 \G2 = Kr .

We say G is an r-clique-sum of G1 and G2.

Proposition 4. Let G be a r-clique-sum of graphs grafov G1 in G2. Then,

P (G, k) =
P (G1, k) · P (G2, k)

P (Kr, k)
.

7: Prove the above proposition.

Solution:

Proof. Observe that every k-coloring the complete graph G1 \G2 can be extended to

P (Gi, k)

k[r]

coloring of Gi za i = 1, 2. Similarly, it can be extended to

P (G, k)

k[r]

coloring of Gi. So,

P (G, k)

k[r]
=

P (G1, k)

k[r]
· P (G2, k)

k[r]
,

and since P (Kr, k) = k[r], we promptly obatin the desired result.
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Corollary 5. Let G be a connected graph, whose blocks are B1, B2, . . . , Br. Then,

P (G, k) = k1�rP (B1, k)P (B2, k) · · ·P (Br, k).

8: Prove the corollary.

Solution: We can do it by induction on the number of blocks. Every block is

connected to the rest by a cut vertex and the blocks form a tree.

1 Coe�cients of chromatic polynomial

Proposition 6. Let G be a simple graph on n vertices and with m edges. For the chromatic polynomial P (G, k)
the following holds:

(a) coe�cient at kn is 1,

(b) the free coe�cient is 0,

(c) coe�cient at kn�1 is �m,

(d) sign of the coe�cients alternate.

9: Prove the proposition. Hint: Use induction on m starting with m = 0.

Solution:

Proof. All these claims can be shown by induction on the number of edges m using the

(1). For the base of induction observe that for m = 0 the graph is isomorphic to K̄n,

and for it holds P (K̄n, k) = kn, and hence obviously hold all the claims.

Let e be an arbitrary edge of G. Graphs G� e and G/e are smaller and by induction

hypothesis, we may assume that the claims hold for them. Note that the polynomials

P (G� e, k) and P (G/e, k) are of degrees n in n� 1, respectively. Now the relation

P (G, k) = P (G� e, k)� P (G/e, k),

implies all the claim of this proposition, just consider their details separately.
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10: Find chromatic polynomials of P3 [ C3 and K1 [K2 [K3.

Solution:
P (P3 [ C3, x) = x6 � 5x5 + 9x4 � 7x3 + 2x2

P (K1 [K2 [K3, x) = x6 � 4x5 + 5x4 � 2x3 .

The first one has two components and the first non-zero coe�cient at the second power. Similarly the second

one has three components and its first non-zero coe�cient at the third power. Now we show that this holds in

general.

Proposition 7. The degree of the smallest non-zero coe�cient of P (G, k) equals the number of components of
G.

11: Prove the proposition. Hint: Induction on m.

Solution:

Proof. We prove the claim by induction on the number of edges m using relation (1).

For m = 0, we have the empty graph G = K̄n, which has n components. Its chromatic

polynomial is xn and the claim obviously holds.

Now suppose the claim holds for G�e and G/e. Observe that G and G/e have the same

number of components, say s. Let a be the coe�cient at ks of P (G� e, k) and let b be
the coe�cient at ks of P (G/e, k). By induction hypothesis, b 6= 0. If a 6= 0, then a and

b have di↵rent sign. This is due to the fact that P (G� e, k) is of degree n, P (G/e, k)
is of degree n� 1, and that the sign of their coe�cients alternates. Consequently, the

coe�cient a� b at xs of P (G, k) is non-zero.

Proposition 8. Let G be a graph on n vertices and with m edges, and t triangles. Then, the coe�cient at xn�2

of P (G, x) is ✓
m

2

◆
� t .

12: Prove the proposition. Hint: Induction on m.

Solution:

Proof. We show the claim by induction on m. For m = 0, we have G = K̄n and the

claim obviously holds. Now we show the claim under assumption that it holds for

G � e and G/e. Let t0 be the number of triangles that contains the edge e. Then the

coe�cient at xn�2
of P (G� e, x) equlas

✓
m� 1

2

◆
� (t� t0) ,
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and the coe�cient at xn�2
of P (G/e, x) is

�(m� 1� t0)

by Proposition 6(c), as we must remove t0 edges in order G/e to become simple. Their

di↵erence gives us the desired result
✓
m� 1

2

◆
� (t� t0) + (m� 1� t0) =

✓
m

2

◆
� t .

2 Expanding theorem

Let c(G) the number of components of a graph G. For an arbitrary subset of edges S ✓ E(G) let G[S] be the
subgraph of G induced by S.

Theorem 9. For any graph G, it holds

P (G, k) =
X

S✓E(G)

(�1)|S|kc(G[S])
. (3)

In the proof we apply the complementary principle of inclusion–exclusion:

|Ac
1 \A

c
2 \ · · · \A

c
n| =

X

I✓{1,2,...,n}

(�1)|I||
\

i2I
Ai|, (4)

where for I = ; we assume the corresponding interesection is the union of all Ai.

13: Prove the Theorem.

Solution:

Proof. Let k be any positive integer. Consider all mapping c (i.e. all non-necessary

proper colorings) of G:

c : V (G) ! {1, . . . , k},
their number is kn, where n is the number of vertices of G. For an edge e = uv denote

by Ae the set of colorings for whish is e monochromatic i.e. c(u) = c(v). The number

of proper colorings, i.e. P (G, k) equals

|Ac

e1
\ Ac

2 \ · · · \ Ac

em
|,

wherem is the number of edges ofG. By complementary principle of inclusion–exclusion

(4), it equals X

S✓E(G)

(�1)
|S||

\

i2S
Aei|.

Finally, for every coloring c 2
T

i2S Aei observe that the the vertices of each component

of G[S] are same colored. Therefore the order of that set is just kc(G[S])
.
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2.1 The number of acyclic orientations of graph

Let a(G) be the number of acyclic orientations of a graph G.

14: For the depicted graph G count a(G), P (G, x), and P (G,�1)

Solution: acyclic orientations is 12. Its chromatic polynomial is

P (G, x) = x4 � 4x3 + 5x2 � 2x,

and moreover P (G,�1) = 12. This interesting observation actually holds for any

graph.

Proposition 10. For an aribitraty graph G on n vertices, it holds

P (G,�1) = (�1)na(G) .

15: Prove the proposition. Use induction on the number of edges.

Solution:

Proof. We prove it by induction on the number of edges e(G). For e(G) = 0, we

assume we have only one acyclic orientation of an edgeless graph, and so the claim

holds because P (G, x) = xn. Now we claim that the following holds

a(G) = a(G� e) + a(G/e)

for any edge e = xy of G. To see this, let D be any acyclic orientation of G. Observe

that D is acyclic orientation also for G� e. Now, let D0
be the orientation by changing

the orientation of the edge xy. Thus, D and D0
are identical on G�e and also on G/e.

Now, observe if D0
is an acyclic orientation of G, then it is also an acyclic orientation

of the graph G/e.

From the above relation and from (1) observe that we imply the claim (consider here

that G/e has n� 1 vertices):

a(G) = (�1)
nP (G� e,�1) + (�1)

n�1P (G/e,�1)

= (�1)
n
(P (G� e,�1)� P (G/e,�1))

= (�1)
nP (G,�1).
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3 Chromatically equivalent graphs

16: Find chromatic polynomials for the depicted graphs.

Solution: Consider the graphs from the bellow figure. All of them have for chromatic

polynomial x(x� 2)(x� 3)
3
.

We say graphs G and H are chromatically equivalent, if they have a same chromatic polynomial, i.e. P (G, x) =
P (H,x).

In case that a graph G has no chromatically equivalent graphs, we say that G is a chromatically unique graph.

17: Find the chromatic polynomial of a cycle Cn

Solution: Such graphs are cycles Cn, whose chromatic polynomial is

(x� 1)
n
+ (�1)

n
(x� 1) .

It can be seen by induction.

P (Cn, x) = P (Pn, x)� P (Cn�1, x) = x(x� 1)
n�1 � (x� 1)

n�1 � (�1)
n�1

(x� 1)

= (x� 1)
n
+ (�1)

n
(x� 1)

Proposition 11. Cn is a chromatically unique graph.

18: Prove the proposition.

Solution:

Proof. Let G be a chromatically equivalent graph to Cn. Then from previous claims G
has the same number of edges as Cn, and this implies that G is a unicyclic graph, i.e. a

graph comprised of a cycle and on its vertices attached trees. Then from Proposition 5

follows that the chromatic polynomial of such a graph is divisible by (x� 1)
2
, which is

not a case for P (Cn, x).

One of the research directions on chromatic polynomial is to classify chromatically equivalent graphs, and also
chromatically unique graphs.
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3.1 Read’s Conjecture

R. C. Read in 1968 proposed the following conjecture of unimodality of the coe�cients of the chromatic poly-
nomial.

Conjecture 12. Let G be a graph and P (G, x) = anx
n+an�1x

n�1+ · · ·+a2x
2+a1x its chromatic polynomial.

Then there exists an index k such that

|an|  |an�1|  |an�2|  · · ·  |ak| � |ak�1| � · · · � |a2| � |a1|.

We can see for example this on the Pteresen graph. Its chromatic polynomial is

x
10 � 15x9 + 105x8 � 455x7 + 1353x6 � 2861x5 + 4275x4 � 4305x3 + 2606x2 � 704x.

The corresponding sequence is

1 < 15 < 105 < 455 < 1353 < 2861 < 4275 < 4305 > 2606 > 704 .

Not so long ago the conjecture was solved by June Huh, Milnor numbers of projective hypersurfaces and the
chromatic polynomial of graphs, J. Amer. Math. Soc., 25 (2012) 907–927.
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